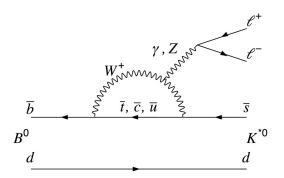
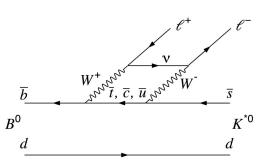


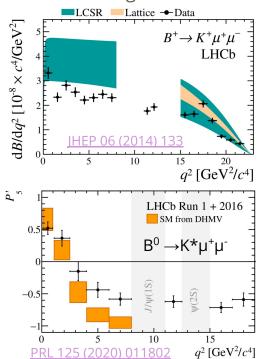
Lepton-flavour-non-universal measurements from LHCb

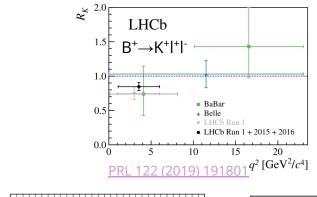
Carla Marin
on behalf of the LHCb collaboration
Lepton Photon, 11-01-2021, Manchester, UK

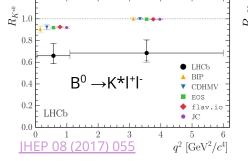

in b \rightarrow sll decays. See <u>G. Wormser talk</u> for b \rightarrow clv



Why rare $b \rightarrow sll decays$?

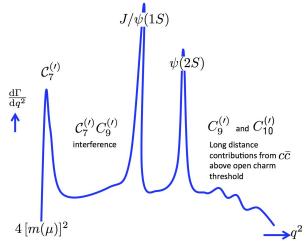

- FCNC sensitive to indirect effects of New Physics (NP) in loops
 - o branching fractions, angular distributions, etc.
- Access to much larger scales than direct searches
- Tests of couplings to 3rd generation b-quarks




Intriguing deviations in rare $b \rightarrow sll$ decays

Differential BR and angular distributions

Lepton Flavour Universality tests



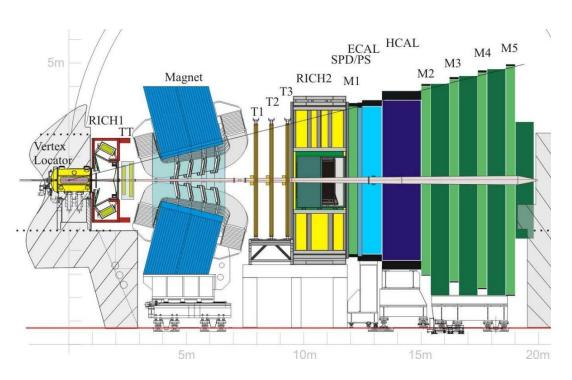
Effective Hamiltonian

Model independent description in effective field theory [Buchalla et al.]. Complete basis of 4-body operators contributing to different final states:

$$H_{eff} \propto V_{tb}V_{ts}^* \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i'\right)$$

$$egin{aligned} O_7^{(')} &\propto (ar{s} \sigma_{\mu
u} P_{R(L)} b) F^{\mu
u} \ O_9^{(')} &\propto (ar{s} \gamma_{\mu} P_{L(R)} b) (ar{l} \gamma_{\mu} l) \ O_{10}^{(')} &\propto (ar{s} \gamma_{\mu} P_{L(R)} b) (ar{l} \gamma_{\mu} \gamma_5 l) \ O_S^{(')} &\propto (ar{s} P_{L(R)} b) (ar{l} l) \ O_P^{(')} &\propto (ar{s} P_{L(R)} b) (ar{l} \gamma_5 l) \end{aligned}$$

Lepton Universality tests


Leptons of different species couple identically to electroweak bosons in SM → <u>Lepton Flavour Universality</u> (LFU)

Measure ratio of same $b \rightarrow sll$ process with muons and electrons in final state:

$$R_H \equiv \frac{\int \frac{d\Gamma(B\to H\mu^+\mu^-)}{dq^2}\,dq^2}{\int \frac{d\Gamma(B\to He^+e^-)}{dq^2}\,dq^2} \qquad \mathrm{H=K^+,\,K^{0^\star},\,K^0_{\,\,\mathrm{S'}}\,K^{0^+}\,...}$$

Hadronic uncertainties cancel in ratio \rightarrow very clean theory prediction

Experimental setup

$$\Delta p / p = 0.5 - 1.0\%$$

 $\Delta IP = (15 + 29/p_{T}[GeV]) \mu m$

$$\Delta E/E_{ECAL} = 1\% + 10\% / \sqrt{(E[GeV])}$$

Electron ID ~90% for ~5% h→e[±] mis-id probability

Muon ID ~ 97% for 1-3% $\pi \rightarrow \mu$ mis-id probability

How do we measure LFU at LHCb?

In the SM:

$$R_H = rac{BR(B
ightarrow H \mu^+ \mu^-)}{BR(B
ightarrow H e^+ e^-)} = 1$$

H = K+, K 0* , K 0 , K 0 , K $^{0+}$...

Experimentally:

$$R_H = egin{array}{c} N(B
ightarrow H \mu^+ \mu^-) \ \hline N(B
ightarrow H e^+ e^-) \ \hline lpha(B
ightarrow H \mu^+ \mu^-) \ \hline \end{array} imes egin{array}{c} \epsilon(B
ightarrow H \mu^+ \mu^-) \ \hline \epsilon(B
ightarrow H \mu^+ \mu^-) \ \hline \end{array}$$
 from MC and calibration samples

Exploit the well tested LFU in J/ ψ modes

$$r_{J/\psi}=rac{BR(B
ightarrow HJ/\psi(\mu^+\mu^-))}{BR(B
ightarrow HJ/\psi(e^+e^-))}=1$$

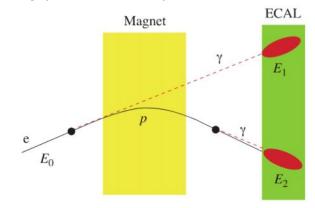
- as stringent cross-check
- to build double ratio at LHCb → cancel systematic effects

$$R_H = rac{N(B
ightarrow H \mu^+ \mu^-)}{N(B
ightarrow H J / \psi(\mu^+ \mu^-))}}{N(B
ightarrow H e^+ e^-)} imes rac{\epsilon (B
ightarrow H e^+ e^-)}{\epsilon (B
ightarrow H J / \psi(e^+ e^-))}}{N(B
ightarrow H J / \psi(e^+ e^-))} imes rac{\epsilon (B
ightarrow H e^+ e^-)}{\epsilon (B
ightarrow H J / \psi(\mu^+ \mu^-))}$$

$b \rightarrow sll$ with electrons at LHCb

Hardware trigger

Larger ECAL occupancy → tighter thresholds for electrons than muons:

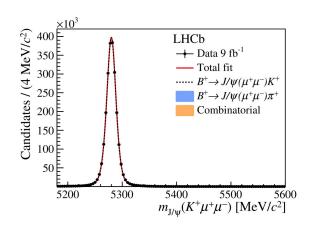

- e p_τ > 2400 (2700) MeV in 2016 (2012)
- $\mu p_{\tau} > 1800 (1700) \text{ MeV in 2016 (2012)}$

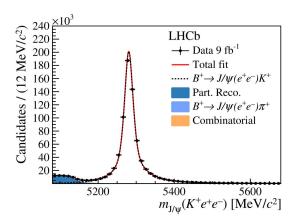
[LHCb-PUB-2014-046, 2019 JINST 14 P04013]

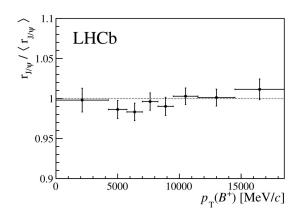
Interaction with detector material

Electrons radiate much more Bremsstrahlung

Recovery procedure in place

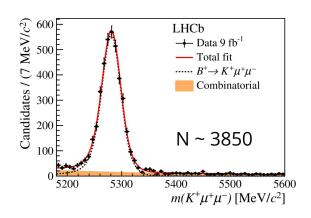

- miss some photons and add fake ones
- ECAL resolution worse than tracking
- → worse mass resolution for electron modes

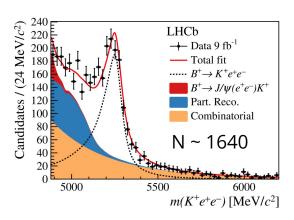

Stringent cross-checks with $B^+ \rightarrow J/\psi K^+$ and $B^+ \rightarrow \psi(2S) K^+$ decays


shows that even absolute electron and muon efficiencies are understood

$$r_{J/\psi} = 0.981 \pm 0.020$$

$$R_{\psi(2S)} = 0.997 \pm 0.011$$
 (double-ratio)


Detailed study of systematic uncertainties:


Fit model	1%
Calibration sample size	1%
Trigger, PID and B kinematics calibration	< 0.1%
q ² distribution and resolution	negligible

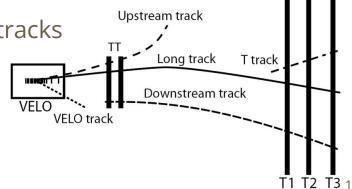
Effect of simulation corrections is small thanks to the double ratio:

- R_K : (+3 ± 1)%
- $R_{J/\psi}$: 20%

Measurement in 1.1 < q^2 < 6.0 GeV² with Run 1+2 datasets \rightarrow x2 b decays R_{κ} from simultaneous fit to $B^+ \rightarrow K^+ \mu^+ \mu^-$ and $B^+ \rightarrow K^+ e^+ e^-$ candidates

$$R_K(1.1 < q^2 < 6.0 \,\text{GeV}^2/c^4) = 0.846^{+0.042}_{-0.039}^{+0.013}_{-0.012}$$

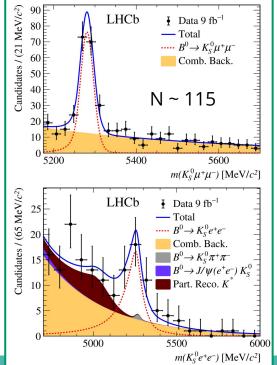
most precise R_K measurement!

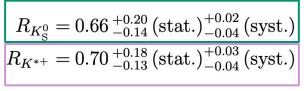

R_{K} and R_{K*} with neutral Kaons

Recent measurement of isospin partners $B^0 \to K_s^0 |_{t}^{t}$ and $B^+ \to K^{t} |_{t}^{t}$

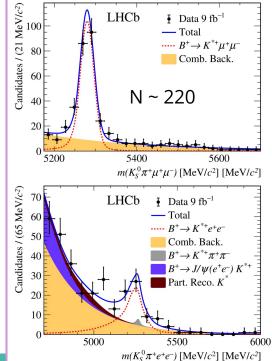
- only explored by Belle/BaBar so far, more challenging at LHCb
- no unambiguous observation of electron modes by any experiment

Use full dataset and follow R_{κ} strategy, with some particularities:

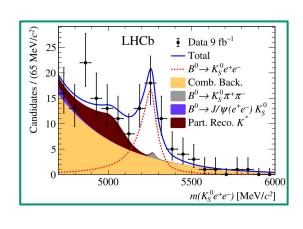

- reconstruct $K_{\varsigma}^{0} \rightarrow \pi^{+}\pi^{-}$ and $K^{*+} \rightarrow K_{\varsigma}^{0}\pi^{+}$
- reconstruct K⁰_s from long and downstream tracks
- still smaller yields due to long-lived K⁰_s



See **CERN** seminar for further details

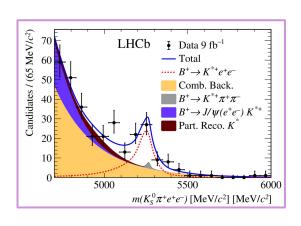

R_{K} and R_{K*} with neutral Kaons

Separate fits to B⁰ and B⁺ decays, simultaneous for muons and electrons



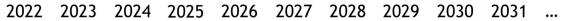
Most precise results and consistent with SM at 1.5 and 1.4σ

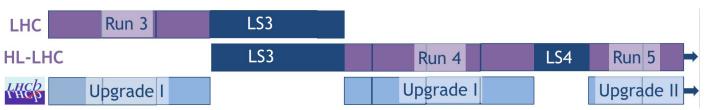
R_K and **R**_{K*} with neutral Kaons


Separate fits to B⁰ and B⁺ decays, simultaneous for muons and electrons

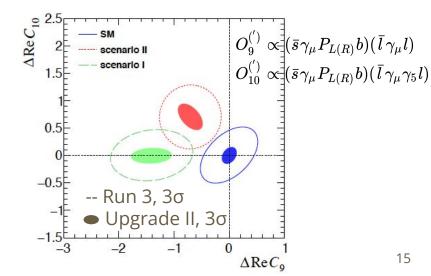
Electron mode significance of 5.3 and $6.0\sigma \rightarrow 1st$ observation

e [±] misId backgrounds are included in the fits

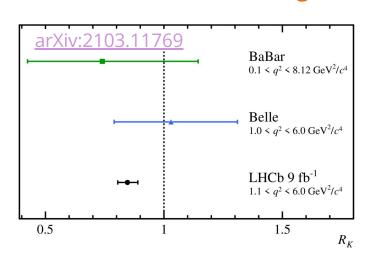

dB/dq² measured for first time in electron modes, in q^2 bins [1.1, 6.0] and [0.045, 6.0] GeV²/c⁴

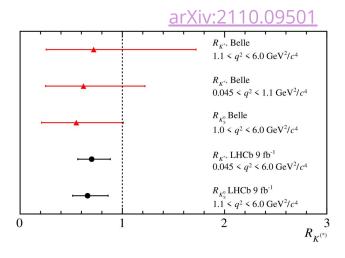


$$\frac{d\mathcal{B}(B^0 \to K^0 e^+ e^-)}{dq^2} = (2.6 \pm 0.6 \text{ (stat.)} \pm 0.1 \text{ (syst.)}) \times 10^{-8} \text{ GeV}^{-2} c^4$$


$$\frac{\mathrm{d}\mathcal{B}\left(B^{+} \to K^{*+}e^{+}e^{-}\right)}{\mathrm{d}q^{2}} = \left(9.2^{+1.9}_{-1.8}\,(\mathrm{stat.})^{+0.8}_{-0.6}\,(\mathrm{syst.})\right) \times 10^{-8}\,\,\mathrm{GeV}^{-2}c^{4}$$

Future prospects for LFU tests at LHCb

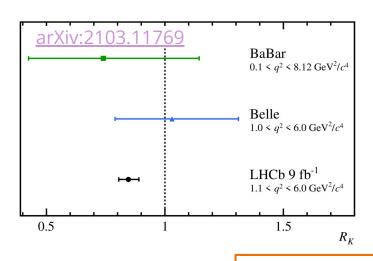

		Run 3	Run 4	Upgrade II
R_X precision	$9\mathrm{fb}^{-1}$	$23 {\rm fb}^{-1}$	$50 {\rm fb}^{-1}$	$300{\rm fb}^{-1}$
R_K	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	0.052	0.031	0.020	0.008
R_{ϕ}	0.130	0.076	0.050	0.020
R_{pK}	0.105	0.061	0.041	0.016
R_{π}	0.302	0.176	0.117	0.047

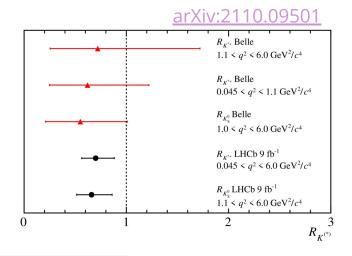


Summary & conclusions

See talk by <u>D. van Dyk</u> and recent <u>Anomaly WS</u> for interpretation of results

Rare b \rightarrow sll decays provide stringent tests of NP Recent results hint at breaking of LFU in b \rightarrow sll





Summary & conclusions

See talk by <u>D. van Dyk</u> and recent <u>Anomaly WS</u> for interpretation of results

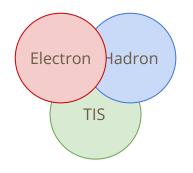
Rare b \rightarrow sll decays provide stringent tests of NP Recent results hint at breaking of LFU in b \rightarrow sll

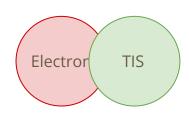
Stay tuned!

Thanks for the attention

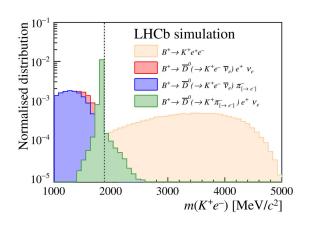
Questions?
Comments?

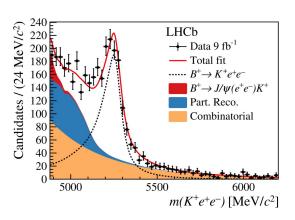
BACK-UP

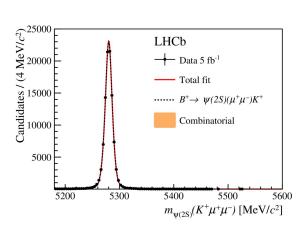

LHCb hardware trigger for electrons

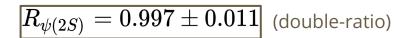

Larger ECAL occupancy → tighter thresholds for electrons:

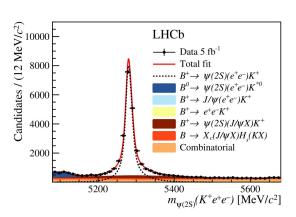
- e $p_{T} > 2700/2400$ MeV in 2012/2016
- $\mu p_{\tau} > 1700/1800 \text{ MeV in } 2012/2016$


[LHCb-PUB-2014-046, 2019 | INST 14 P04013]


Mitigate including hadron trigger and events Triggered Independently of the Signal (TIS)

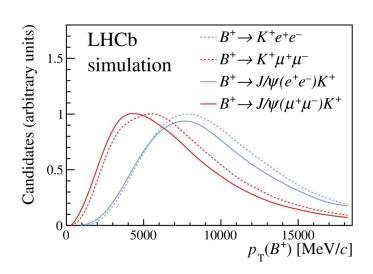

Cannot apply J/ ψ mass constraint to rare mode \rightarrow worse resolution \rightarrow larger backgrounds for electron mode. Dedicated vetoes to minimise them.

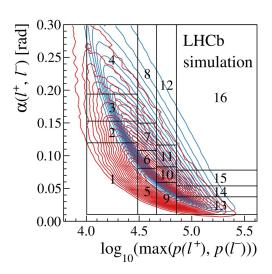


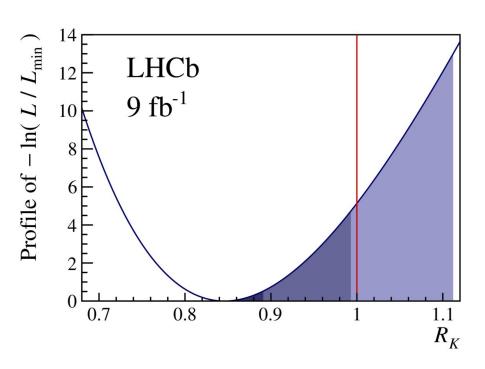


$R_{\psi(2S)}$ cross-check

Stringent cross-checks with $B^+ \rightarrow J/\psi \ K^+$ and $B^+ \rightarrow \psi(2S) \ K^+$ decays






Constraint m(ll) to J/ ψ or ψ (2S) mass \rightarrow strong improvement of mass resolution

R_K : $r_{J/\psi}$ cross-checks

R_K: significance

